Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Microprocessor Execution Time and Memory Use for Battery State of Charge Estimation Algorithms

2022-03-29
2022-01-0697
Accurate battery state of charge (SOC) estimation is essential for safe and reliable performance of electric vehicles (EVs). Lithium-ion batteries, commonly used for EV applications, have strong time-varying and non-linear behaviour, making SOC estimation challenging. In this paper, a processor in the loop (PIL) platform is used to assess the execution time and memory use of different SOC estimation algorithms. Four different SOC estimation algorithms are presented and benchmarked, including an extended Kalman filter (EKF), EKF with recursive least squares filter (EKF-RLS) feedforward neural network (FNN), and a recurrent neural network with long short-term memory (LSTM). The algorithms are deployed to two different NXP S32Kx microprocessors and executed in real-time to assess the algorithms' computational load. The algorithms are benchmarked in terms of accuracy, execution time, flash memory, and random access memory (RAM) use.
Journal Article

Model-Based Thermal Control Strategy for Electrified Vehicles

2022-03-29
2022-01-0203
Stringent requirements for high fuel economy and energy efficiency mandate using increasingly complex vehicle thermal systems in most types of electrified vehicles (xEVs). Enabling the maximum benefits of such complex thermal systems under the full envelope of their operating modes demands designing complex thermal control systems. This is becoming one of the most challenging problems for electrified vehicles. Typically, the thermal systems of such vehicles have several modes of operation, constituting nonlinear multiple-input/multiple-output (MIMO) dynamic systems that cannot be efficiently controlled using classical or rule based strategies. This paper covers the different steps towards the design of a model-based control (MBC) strategy that can improve the overall performance of xEV thermal control systems. To achieve the above objective, the latter MBC strategy is applied to control cooling of the cabin and high voltage battery.
Technical Paper

FCA US LLC-Magnesium Closures Development

2021-04-06
2021-01-0278
This paper will focus on automotive development highlights of FCA US LLC magnesium intensive closures components. Deploying lightweight materials is one of many key strategies that has been implemented to reduce vehicle mass and improve overall fuel economy while maintaining rigorous functional objective performance. This paper will outline some basic design and manufacturing considerations for magnesium closures. The development of the 2017 Chrysler Pacifica liftgate and 2018 Jeep® Wrangler swing gate along with the two generations of magnesium spare tire brackets will be the focus.
Technical Paper

Numerical Parametric Study of a Six-Stroke Gasoline Compression Ignition (6S-GCI) Engine Combustion - Part III

2021-04-06
2021-01-0401
The aim of this paper is to computationally investigate the combustion behavior and energy recovery processes of a six-stroke gasoline compression ignition (6S-GCI) engine that employs a continuously variable valve duration (CVVD) technique, under highly diluted, low-temperature combustion (LTC) conditions. The effects of variation of parameters concerning injection spray targeting (number of fuel injector holes. injector nozzle size and spray included angle) and combustion chamber geometry (piston bowl design) are analyzed using an in-house 3D CFD code coupled with high-fidelity physical sub-models with the Chemkin library in conjunction with a skeletal chemical kinetics mechanism for a 14-component gasoline surrogate fuel.
Technical Paper

Optimum Engine Power Point Determination Method to Maximize Fuel Economy in Hybrid Vehicles

2021-04-06
2021-01-0419
One of the advantages of hybrid vehicles is the ability to operate the engine more optimally at a low brake specific fuel consumption (BSFC) as compared to conventional vehicles. This ability of hybrid vehicles is a major factor contributing to the fuel economy improvement over conventional vehicles. Unlike conventional gasoline powertrains, hybrid powertrains allow engine to be switched off and use battery power to propel vehicles. In order to maintain battery state of charge neutral operation between the start and end of a drive cycle, the net electrical energy consumption from the battery requires to be zero. An optimization algorithm can be developed and calibrated in different ways to achieve net zero battery energy over the cycle. For instance, the engine can be operated at powers higher than the power of the drive cycle to charge the battery. This accumulated energy can be used for all-electric propulsion by turning off the engine.
Technical Paper

Transient Thermal Modeling of an Automotive Rear-Axle

2021-04-06
2021-01-0569
In response to demands for higher fuel economy and stringent emission regulations, OEMs always strive hard to improve component/system efficiency and minimize losses. In the driveline system, improving the efficiency of an automotive rear-axle is critical because it is one of the major power-loss contributor. Optimum oil-fill inside an axle is one of the feasible solutions to minimize spin losses, while ensuring lubrication performance and heat-dissipation requirements. Thus, prior to conducting vehicle development tests, several dyno-level tests are conducted to study the thermal behavior of axle-oil (optimum level) under severe operating conditions. These test conditions represent the axle operation in hot weather conditions, steep grade, maximum tow capacity, etc. It is important to ensure that oil does not exceed its thermal limits (disintegration of oil leading to degradation).
Technical Paper

A Qualitative Comparison of the Macroscopic Spray Characteristics of Gasoline Mixtures and their Multi-Component Surrogates Using a Rapid Compression Machine

2021-04-06
2021-01-0558
Rapid Compression Machines (RCM) offer the ability to easily change the compression ratio and the pressure/mixture composition/temperature to gather ignition delay data at various engine relevant conditions. Therefore, RCMs with optical access to the combustion chamber can provide an effective way to analyze macroscopic spray characteristics needed to understand the spray injection process and for spray model development, validation and calibration at conditions that are suitable for engines. Fuel surrogates can help control fuel parameters, develop models for spray and combustion, and perform laser diagnostics with known fluorescence characteristics. This study quantifies and evaluates the macroscopic spray characteristics of multicomponent gasoline surrogates in comparison to their gasoline counterparts, under gasoline direct injection (GDI) engine conditions.
Technical Paper

A Rapid Compression Machine Study on Ignition Delay Times of Gasoline Mixtures and their Multicomponent Surrogate Fuels under Diluted and Undiluted Conditions

2021-04-06
2021-01-0554
In this work autoignition delay times of two multi-component surrogates (high and low RON) were experimentally compared with their target full blend gasoline fuels. The study was conducted in a rapid compression machine (RCM) test facility and a direct test chamber (DTC) charge preparation approach was used for mixture preparation. Experiments were carried over the temperature range of 650K-900K and at 10 bar and 20 bar compressed pressure conditions for equivalence ratios of (Φ =) 0.6-1.3. Dilution in the reactant mixture was varied from 0% to 30% CO2 (by mass), with the O2:N2 mole ratio fixed at 1:3.76. This dilution strategy emulates exhaust gas recirculation (EGR) substitution in spark ignition (SI) engines. The multicomponent surrogate captured the reactivity trends of the gasoline-air mixtures reasonably well in comparison to the single component (iso-octane) surrogate.
Technical Paper

Fuel-to-Warm Methodology: Optimization Tool for Distributing Waste Heat during Warm-Up within the Powertrain System

2021-04-06
2021-01-0210
The heat generated by an internal combustion engine must be dissipated to maintain acceptable component temperatures throughout the entire powertrain system under all operating conditions. However, under cold start conditions it is beneficial to retain this available heat to achieve faster warm-up in order to reduce fuel consumption. In modern engines there are several components in the coolant circuit that are used to accelerate the warm-up of sub-system fluids such as the engine oil, transmission oil and axle oil. The magnitude of the fuel consumption reduction will depend on how these rapid warm-up devices are arranged, combined and controlled. This paper describes a methodology that was developed to optimize the distribution of coolant heat in the powertrain system during warm-up. A comparative study can be performed to optimize the arrangement of each heat exchanger in any given powertrain system to minimize cost and time early in development.
Technical Paper

Compressor Sizing for a Battery Electric Vehicle with Heat Pump

2021-04-06
2021-01-0221
With the demand of growing cooling requirements of fast charging and new thermal architecture design in battery electric vehicles, the automotive industry is exploring electric compressors of large displacement. Compared with small and mid-size (displacement less than 33 cc) compressor, large (34-44 cc) and extra-large (45 cc and above) compressor products are used. This paper investigates the compressor sizing effect for heat pump (HP) system of A-Segment and D-Segment battery electric vehicles. The system performance is evaluated with large (34 cc) and extra-large (57 cc) compressors by considering energy efficiency, cabin thermal management and battery fast charging use cases.
Technical Paper

Analysis of the Effect of Heat Pipes on Enhancement of HEV/PHEV Battery Thermal Management

2021-04-06
2021-01-0219
Thermal management of lithium-Ion battery (LIB) has become very critical issue in recent years. One of the challenges for the design and packaging of the battery is to maintain the battery temperature within acceptable ranges and also reduce temperature gradients within the battery cells. Controlling the battery temperature is essential for the battery performance and the long-term battery life. Increased difference between battery cell temperatures can lead to non-uniform charging and non-uniform ageing of battery cells. The purpose of this paper is to investigate available technologies using heat pipes as a means of improving battery thermal management. Several studies have been conducted regarding the effect of heat pipes on battery temperature. However, in this paper we present a comprehensive study of heat pipes effects through transient analysis of a complete vehicle thermal model.
Technical Paper

Development of a Robust Thermal Management System for Lead-Acid Batteries

2021-04-06
2021-01-0232
Lead-acid batteries have been widely used in automotive applications. Extending battery life and reducing battery warranty requires reducing any deteriorating to battery internals and battery electrolyte. At the end of battery life, it is required to maintain at least 50% of its initial capacity [1,2]. The rate of battery degradation increases at high battery temperatures due to increased rate of electrochemical reactions and potential loss of battery electrolyte. For Lead-Acid batteries, an electrolyte solution consists of diluted sulfuric acid. Battery electrolyte/water loss affects battery performance. Water loss is caused by high internal battery temperature and gassing off due to battery electrochemistry. High temperatures, high charging rates, and over charging can cause a loss of electrolyte in non-sealed batteries. In sealed batteries, the same factors will cause an increase in temperature and pressure which can eventually result in the release of hydrogen and oxygen gases.
Technical Paper

A Novel Strategy for Sizing the Mechanical Pump in a Passenger Car Automatic Transmission

2021-04-06
2021-01-0692
In recent decades, there has been a growing focus on improving overall vehicle efficiency and fuel economy due to growing customer awareness and more stringent environmental regulations. Effort has been placed on improving the engine efficiency and reducing the losses of the transmission and driveline. One essential component of this process is to correctly size the transmission oil pump as it is one of the main energy consumers in the powertrain. Conversely, the oil pump has a critical mission of ensuring reliable and high quality gear shift as well as supplying lubrication and cooling oil to various components in the transmission. This paper outlines a strategy to systematically understand and quantify the main requirements for sizing the oil pump to ensure adequate performance while minimizing the energy consumption of the pump. The proposed framework is a three-legged approach.
Journal Article

Increasing the Effective AKI of Fuels Using Port Water Injection (Part I)

2021-04-06
2021-01-0470
Anti-knock index (AKI) is a metric that can be used to quantify the anti-knock performance of a fuel and is the metric used in the United States. AKI is the average of Research Octane Number (RON) and Motor Octane Number (MON), which are calculated for every fuel on a Cooperative Fuel Research (CFR) engine under controlled conditions according to ASTM test procedures. Fuels with higher AKI have better knock mitigating properties and can be run with a combustion phasing closer to MBT in the knock limited operating region of a gasoline engine. However, fuels with higher AKI tend to be costlier and less environmentally friendly to produce. As an alternative, the anti-knock characteristics of lower AKI fuels can be improved with water injection. In this sense, the water injection increases the ‘effective AKI’ of the fuel.
Journal Article

Fuel Effects on the Propensity to Establish Propagating Flames at SPI-Relevant Engine Conditions

2021-04-06
2021-01-0488
In order to further understand the sequence of events leading to stochastic preignition in a spark-ignition engine, a methodology previously developed by the authors was used to evaluate the propensity of a wide range of fuels to establishing propagating flames under conditions representative of those at which stochastic preignition (SPI) occurs. The fuel matrix included single component hydrocarbons, binary mixtures, and real fuel blends. The propensity of each fuel to establish a flame was correlated to multiple fuel properties and shown to exhibit consistent blending behaviors. No single parameter strongly predicted a fuel’s propensity to establish a flame, while multiple reactivity-based parameters exhibited moderate correlation. A two-stage model of the flame establishment process was developed to interpret and explain these results.
Journal Article

On the Expansion of On-Board Diagnostics (OBD) to Electric Propulsion Systems in Battery Electric Vehicles

2021-04-06
2021-01-0439
Currently the On-Board Diagnostics (OBD) requirements enforced by government agencies do not cover electric vehicles. Although the California Air Resources Board (CARB) mandates all light and medium duty vehicles and heavy duty engine dynamometer certified engines equipped with fossil fuel-powered engines, including all hybrid vehicles, must follow the OBD requirements in California Code of Regulation (CCR) 1968.2 and 1971.1, Battery Electric vehicles (BEVs), are exempted from OBD requirements. The legislators, such as CARB, have started to make proposals for on-board systems to monitor electric propulsion system health. In addition, there may be customer needs to obtain standard vehicle service information and the Original Equipment Manufacturers (OEMs) may also have the desire for common diagnostic strategies across different vehicle applications to lower the development costs.
Technical Paper

Comparative Study between Equivalent Circuit and Recurrent Neural Network Battery Voltage Models

2021-04-06
2021-01-0759
Lithium-ion battery (LIB) terminal voltage models are investigated using two modelling approaches. The first model is a third-order Thevenin equivalent circuit model (ECM), which consists of an open-circuit voltage in series with a nonlinear resistance and three parallel RC pairs. The parameters of the ECM are obtained by fitting the model to hybrid pulse power characterization (HPPC) test data. The parametrization of the ECM is performed through quadratic-based programming. The second is a novel modelling approach based on long short-term memory (LSTM) recurrent neural networks to estimate the battery terminal voltage. The LSTM is trained on multiple vehicle drive cycles at six different temperatures, including −20°C, without the necessity of battery characterization tests. The performance of both models is evaluated with four automotive drive cycles at each temperature. The results show that both models achieve acceptable performance at all temperatures.
Technical Paper

A Domain-Centralized Automotive Powertrain E/E Architecture

2021-04-06
2021-01-0786
This paper proposes a domain-centralized powertrain E/E (electrical and/or electronic) architecture for all-electric vehicles that features: a powerful master controller (domain controller) that implements most of the functionality of the domain; a set of smart actuators for electric motor(s), HV (High Voltage) battery pack, and thermal management; and a gateway that routes all hardware signals, including digital and analog I/O, and field bus signals between the domain controller and the rest of the vehicle that is outside of the domain. Major functional safety aspects of the architecture are presented and a safety architecture is proposed. The work represents an early E/E architecture proposal. In particular, detailed partitioning of software components over the domain’s Electronic Control Units (ECUs) has not been determined yet; instead, potential partitioning schemes are discussed.
Technical Paper

Effect of Battery Temperature on Fuel Economy and Battery Aging When Using the Equivalent Consumption Minimization Strategy for Hybrid Electric Vehicles

2020-04-14
2020-01-1188
Battery temperature variations have a strong effect on both battery aging and battery performance. Significant temperature variations will lead to different battery behaviors. This influences the performance of the Hybrid Electric Vehicle (HEV) energy management strategies. This paper investigates how variations in battery temperature will affect Lithium-ion battery aging and fuel economy of a HEV. The investigated energy management strategy used in this paper is the Equivalent Consumption Minimization Strategy (ECMS) which is a well-known energy management strategy for HEVs. The studied vehicle is a Honda Civic Hybrid and the studied battery, a BLS LiFePO4 3.2Volts 100Ah Electric Vehicle battery cell. Vehicle simulations were done with a validated vehicle model using multiple combinations of highway and city drive cycles. The battery temperature variation is studied with regards to outside air temperature.
Technical Paper

IC Engine Internal Cooling System Modelling Using 1D-CFD Methodology

2020-04-14
2020-01-1168
Internal combustion engine gets heated up due to continuous combustion of fuel. To keep engine working efficiently and prevent components damage due to very high temperature, the engine needs to be cooled down. Based on power output requirement and provision for cooling system, every engine has it’s unique cooling system. Liquid based cooling systems are majorly implemented in automobile. It’s important to keep in mind that during design phase that, cooling the engine will lower the power to fuel consumption ratio. Therefore, during lower ambient conditions, the cooling system should be able to uniformly increase the temperature of the engine components, engine oil and transmission oil. This is achieved by circulating the coolant through cooling jacket, engine oil heater and transmission oil heater, which will be heated by the combustion heat.
X